

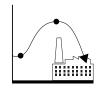
(I) Brochure

Aspen Unified[™]

Updated for aspenONE® V14.3 May 2024

Overview

Aspen Unified is the next-generation planning, scheduling and yield accounting solution from AspenTech, the world's leading provider of planning and scheduling solutions—Aspen PIMS-AO[™] and Aspen Petroleum Scheduler[™]. Aspen Unified enables companies to increase margins and save time by coordinating siloed business processes for better efficiency across the value chain.


Planning, scheduling, yield accounting and dynamic optimization are supported in one consistent web-based environment with an intuitive look and feel, flowsheet environment, common model, data components and powerful integration. This reduces the gap created by inefficiencies in implementing optimal plans to operations. Adaptive technologies such as advanced process control (Aspen DMC3[™]) and dynamic optimization (Aspen GDOT[™]) pass changing model parameters and constraint information back to planning and scheduling. This feedback, along with predictive maintenance from Aspen Mtell[®] and Al/first principles hybrid models in Aspen HYSYS[®], further enable moving operations closer to the optimal plan.

Expected Benefits of Aspen Unified

Increase margins significantly

- Align plan, schedule and execution
- Enable agile and robust decision-making
- Prevent errors by sharing data seamlessly
- Enable more profitable integration between refining and chemicals units
- Allow companies without scheduling models to adopt scheduling easily by leveraging existing planning models

Reduce emissions

- Model CO₂ and other GHG emissions plus emissions trading/taxation schemes
- Set limits on CO₂ to ensure compliance to sustainability targets
- Understand effects of feedstock and operational changes on sustainability metrics
- Model biofeedstocks and track certification of bio-products
- Accurately report emissions for audit and compliance purposes

Save up to 1000 staff-hours per year

- Save up to 200 staff-hours per year by reducing time and effort on model maintenance and management with new and improved workflows
- Save up to 1000 staff-hours per year per scheduler by automating data reconciliation and first-pass feasible schedule creation
- Train new users much faster

Reduce total cost of ownership up to 75%

- Deploy on a server or in a public or private cloud: typically 25-50% less expensive than powerful desktop computers
- Lower hardware costs with a device- and platform-agnostic solution
- Save IT cost on software upgrades using cloud or server installation

CHALLENGE

SOLUTION

Siloed systems are difficult to maintain and can result in lost opportunities.

Miscommunication between different groups in the plant, such as planners, schedulers and operators, can lead to errors resulting in margin leakage. As plant operations and conditions change over time, models need to be updated to stay accurate.

Aspen Unified simplifies these problems by combining models and data into one source.

- Production planning and scheduling can use the same master data (e.g., streams, components, blends, etc.), submodels (e.g., reactor yields) and assay data
- Synchronize operational constraints from APC/Aspen GDOT with planning and scheduling in real time to ensure that models reflect actual plant conditions
- Easily collaborate in a web-based environment.
- Ensure higher accuracy with Hybrid Models that combine first principles with AI
- Leverage validated and reconciled data to make better planning and scheduling decisions
- Companies without scheduling models can more easily adopt them using their Aspen Unified PIMS models, enabling higher margins, more stable operations and agile responses to unplanned events

Customers want an easy-to-use, intuitive interface and workflows.

The leading planning solutions from AspenTech, Aspen PIMS and Aspen PIMS-AO, are among the most established tools in the refining and petrochemical industries. With the prevalence of digital technology, users expect software to be easy to use and understand, with minimal training to be effective.

Aspen Unified combines an intuitive user interface, modern web-based architecture and data visualization tools for more efficient and powerful analysis.

- Faster to learn and train new users—expected savings of at least one staff-week per new user trained
- Manage cases more intuitively—drag and drop, parent-child, copy/paste and automated case set creation
- Better understanding of the results through flowsheet and quick data visualization

CHALLENGE

Technological advances are not used to full potential.

With high-performance computing, planning can be transformed into a big data exercise. Running hundreds or thousands of cases in a reasonable timeframe is now possible.

SOLUTION

Aspen Unified PIMS uses the latest hardware to deliver unmatched speed and allows you to keep working while the model solves

- Cloud computing provides dramatically faster performance
- Users can keep working while cases run, enabling real-time interaction with the results and better data analysis

Increase Profits and Reduce Carbon Emissions through Collaboration

Technology: Aspen Unified

Key Capabilities

- AspenTech's proprietary solver for complex refinery and chemical process problems is consistently proven more robust and reliable than any other commercially available solver (such as FICO XSLP)¹
- Simplified user interface enables new users to learn the tool faster than ever
- Multi-user enterprise environment improves security and change tracking of business-critical, economic decision-making data
- Dynamic reports, which automatically update with new results, are shareable with others via a quick URL link
- Common data and model library streamlines model updates and prevents costly errors
- Cloud deployment options—on-premise, virtual private cloud, or hybrid

- Enable better business results
- Analyze more scenarios with speeds up to 100 times faster and cloud-enabled parallel processing
- Predict and optimize the tradeoff between emissions and profits
- Save time, money with easy software deployment and upgrades, a centralized infrastructure and automated model migration
- Train new users up to two times faster

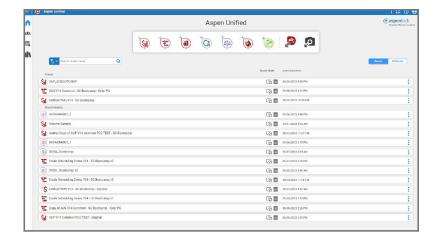


Figure 2. Aspen Unified PIMS flowsheet and quick right-click graphing.

Production Planning

Technology: Aspen Unified PIMS

Key Capabilities

- *NEW Al agent*, Aspen Virtual Advisor, or "AVA", enables better understanding of model results, such as marginal values and constraints
- Flowsheet interface to build, edit, visualize, and understand your planning models and results
- Automatic pricing and sensitivity analysis tools
- Streamlined model management workflow including check in/out, live sharing and change tracking
- Easy plug-and-play integration with business intelligence tools such as Microsoft Power Bl
- Automatic import and conversion of existing PIMS-AO model to Aspen Unified PIMS
- Automatic data imports from third-party sources via flexible web APIs

Key Benefits

- Enable better business decisions with the proprietary AspenTech solver
- Increase margins significantly²
- Save time each day with automation tools
- Solve up to 100 times faster with cloud-enabled parallel processing

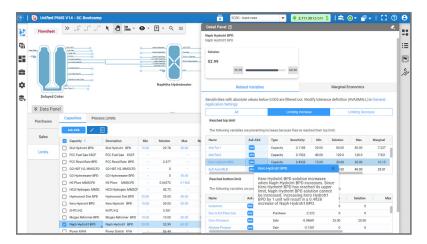


Figure 3. Aspen Virtual Advisor (AVA) for Unified PIMS[™], showing increase in naphtha hydrotreater rate.

Unified PIMS V14 - SC Bootcamp								SCBC - base case 👻				🛋 🔘 -	- 🖉 + 1 C	0
	>	1 0 L-	• •	e - Q			Constraints and Pe	nalties, Stream Tracing						
											Stream Tracing			
							Constraints							
	- 🛄 -	<u>u 1</u>		•			S 199*	Mentiller	Description	Min	Solution	Max	4 Marginal	
		• 1					Blend Spec	Sulphur of ULS Diesel	Bully, WTN		0.001500	0.001500	18,866	
		• 着 🕂					Silend Spec	Sulphur of Kero/Jet	Sulfur, WTh		0.05000			
							Alkylate Prod BPD Kero Hydrobit BPD		40.00 30.00					
					Capacity	Kers Hydrotet BPD								
		· ·		_ *										
	11. A 11.													
	1													
	_					161 Da								
♥ Data Par	el													
Purchases	Capacities Proces	ss Limits												
22														
Sales	Capacity	Description	Min	Solution	Max	5 M.								
	Dull Acki MLB	Alkylate Prod EPD		40.00		29.01	Process Limit	Cooler Duty, MMISTLL®	Cooler Duty, MMETL					
	Kero Hydrotrt BPD	Kero Hydrotit BPD		20.00		10.15								
	AtmTwr2	Crude Unit #2 EPD				7.921	Blend Spec							
	AmTwrt	Crude Unit #1 EPD		80.00		7.227	Sillend Spec							
	Mogas Reformer BPD	Mogas Reformer DPD					Illend Spec							
	Hydrocrack Dist BPD	Hydrocrack Dist BPD												
	D P01						Slend Spec	DistNExep @160F of RFG Premiu						
	10 102						🛃 Blend Spec	Dist%Evep @160F of Conv Premi						
	VacTur1	Vec Unit #1 BPD					Process Limit							
	VacTwr2	Vac Unit #2 BPD					Process Limit	Catalyst Age - HCU	Catalyst Age - HCU					
	0 800						Process Limit							
							Process Limit	HKN 90% PL 7F	HIN 92% PT, "F		300.0			
	104	Naphtha Processing												

Figure 4. Flowsheet with contraints panel in dark mode.

Production Scheduling


Technology: Aspen Unified Scheduling

Key Capabilities

- Full refinery and olefins scheduling now with blending optimization
- Enable collaboration across teams with true multi-user scheduling
- Improved Gantt chart and flowsheet
- Integration across Unified imports plan from Aspen Unified PIMS and compares plan vs schedule vs actual trends
- **NEW** Automate the creation of a new feasible crude schedule using **Industrial AI** that learns from past schedules to initialize the schedule
- Automate the reconciliation of yesterday's schedule with plant data
- Automate other tasks with provided logic and custom scripts
- Directly compare two options (cases) in the schedule

Key Benefits

- Increase margins up to 3%
- Save time with automation
- Enable crude and blend optimization
- Enable more stable refinery operations by reducing changes

Figure 5. Aspen Unified Scheduling Gantt chart home screen with stock chart panel.

Figure 6. Aspen Unified Scheduling crude composition chart in dark mode.

Value Chain Optimization

Technology: Aspen Unified Multisite for PIMS™

Key Capabilities

- Optimize supply, production, demand, sourcing and transportation across multiple refineries and terminals (depots) in a region
- Integrate Petroleum Supply Chain Planner (PSCP) distribution models with Aspen Unified PIMS/Aspen Unified Multisite for PIMS
- Visualize planning results using maps, graphs and tables
- Easily link and send data such as constraints or inventories from individual models to the global model
- Evaluate business opportunities such as entering new geographic markets, creating new products, using new terminals and more

- Increase margin by selecting optimal production locations and feedstock sourcing—gain 10 to 50 cents per barrel or up to \$50M per year
- Reduce supply cost by optimizing freight and inventory usage
- Reduce cost of rush shipments and demurrage from better planning
- View the entire value chain to reduce disruptions from unplanned events, like hurricanes or typhoons

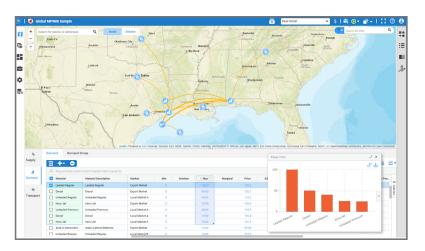


Figure 7. Aspen Unified Multisite for PIMS map and graphing.


Production Accounting

Technology: Aspen Unified Reconciliation and Accounting™

Key Capabilities

- Complete tasks more easily with intuitive workflows, close the balance faster with the cutting-edge Smart Solver and easily interpret results with advanced visualization and powerful dynamic reports
- Simultaneous mass and volume balance automatically resolves lab-measured density errors to increase reconciliation accuracy while lowering sampling costs
- Automate CO₂ emissions data collection and aggregation from multiple sources for compliance and reporting
- Integrate plan and schedule data to highlight Plan vs Actual in AURA

- Reduce material losses and increase margins with fast, efficient mass and volume balance
- Empower key stakeholders to make better decisions based on validated and reconciled production data
- Save deployment time and effort during model implementation and maintenance with a library of standard objects and calculations, and the streamlined AORA-to-AURA migration tool

Reports Production Bala	nce			Volume	Mass						
	Inventory (MLB) < Input from (m (MLB) <	Output to (N		Production (MLB) <				
Material	Deginning	Ending	Receiving Dock	Production Dock	Shipping Dock	Consumption Dock	Reclassification	Mass	5	Price	
 Charge (1) 											
Arab Heavy	107,319.7755	63,458.6563	15,242,5204	0	0	0	0	59,103,6395	100.000%	0	
Sub Totals of Charge	107,319.7755	63,458.6563	15,242.5204	0	0	0	0	59,103.6395	100.000%	0	
 Intermediate (3) 											
Coke	0	0	0	0	0	0	0	0	0.000%	0	
VecuaryResidue	0	0	٥	0	0	0	0	0	0.000%	0	
Kerosene	21,607.7052	28,566.1108	0	0	0	0	0	6,958.4136	11,7735	0	
Sub Totals of Intermediate	21,607.7052	28,566.1188	0	0	0	0	0	6,958.4136	11.7735	0	
Total Charge	107,319.7755	63,458.6563	15,242.5204	0	0	0	0	59,103.6395	100.000%	٥	
Total Yield	161,659.3755	207,676.3980	0	0	13,054.9931	0	٥	59,072.0156	99.9465		
Total Unknown Loss/Gain	54,339.6000	144,217.7417	-15,242.5204	0	13,054,9931	0	0	-31.6239	-0.054%	0	
Total Known Loss		0	0	0	0	50.0000	0	-50.0000	-0.085%	0	
Total Loss/Gain								-81.6239	-0.138%		
Rows: 12 Gross Plant Margin/GP	M): • Total Operating	Cost(TOC): 0 Net Operatir	g Margin(NOM): 0								
*											
				Reconciled							
-5.0000K 0K	5.0000K	10.0000K 15.0000	к 20.0000К ;	25.0000K 30.0000K	35.0000K 40.0000	K 45.0000K 50	0.0000K 55.0000K	60.0000K			
Charge								Arab He	2004	HeavyFuelOil	
Unarge							1 1	Coke		HeatingOil	
Intermediate								Vacuum		JetA1	
			_					Kerosen		DieselFuels	
								Comme	rcial@utane rcialPropane	CommercialGa	asol
Finished								Comme	claipropane	FlareGas	
Known Loss											

Figure 9. Dynamic reports include minimal configuration.

Chevron Assay Database

Technology: Aspen Assay Management[™] with Partner, Equinox Software and Services Pvt. Ltd.

Key Capabilities

- Over 1000 unique crudes with over 2800 assays and over 60 physical and chemical properties
- All major globally traded crudes are represented by multiple assays
- Updated regularly
- Contact your AspenTech Sales representative for more information

EQUINOX ...data to decisions...

- Increase planning model accuracy with more accurate assays
- Select better crudes for higher refining margin
- Analyze new crudes for spot opportunities
- Value crudes more accurately for trading

Verify Plan Results with Artificial Intelligence (AI)

Technology: Aspen Verify for Planning™

Key Capabilities

- Analyze historical plan results with AI algorithms to create clusters of data to better understand results and thus make better business decisions
- Rank variables by impact on the profitability of the plan to focus your time investigating what impacts the plan most

Key Benefits

- Help new planners and plan reviewers (such as operations and technical management) to understand the plan and see how it compares to history
- Identify discrepancies to prevent costly mistakes in the plan, saving approximately \$1-3M per year²
- Save time reviewing the plan—approximately 4 hours per week for a planner and 1 hour per month for each plan reviewer

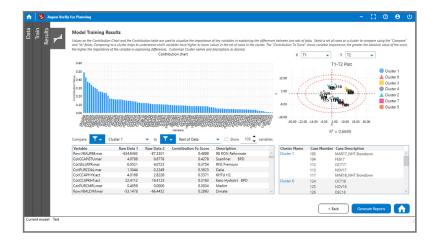


Figure 10. Aspen Verify for Planning home page.

²Contact AspenTech for a benefits estimate

About AspenTech

Aspen Technology, Inc. (NASDAQ: AZPN) is a global software leader helping industries at the forefront of the world's dual challenge meet the increasing demand for resources from a rapidly growing population in a profitable and sustainable manner. AspenTech solutions address complex environments where it is critical to optimize the asset design, operation and maintenance lifecycle.Through our unique combination of deep domain expertise and innovation, customers in asset-intensive industries can run their assets safer, greener, longer and faster to improve their operational excellence.

aspentech.com

© 2024 Aspen Technology, Inc. All rights reserved. AT-2978

